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Chapter 6 

 
Shear locking 

 
In the preceding chapter, we saw a Ritz approximation of the Timoshenko beam problem and 
noted that it was necessary to ensure a certain consistent relationship between the trial 
functions to obtain accurate results. We shall now take up the finite element representation of 
this problem, which is essentially a piecewise Ritz approximation. Our conclusions from the 
preceding chapter would therefore apply to this as well. 
 
6.1 The linear Timoshenko beam element 
 
An element based on elementary theory needs two nodes with 2 degrees of freedom at each 
node, the transverse deflection w and slope dw/dx and uses cubic interpolation functions to 
meet the C1 continuity requirements of this theory (Fig. 6.1). A similar two-noded beam 
element based on the shear flexible Timoshenko beam theory will need only C0 continuity 
and can be based on simple linear interpolations. It was therefore very attractive for general 
purpose applications. However, the element was beset with problems, as we shall presently 
see. 
 
6.1.1 The conventional formulation of the linear beam element 
 
The strain energy of a Timoshenko beam element of length 2l can be written as the sum of its 
bending and shear components as,  
 
    ( )dxkGA21EI21 TT∫ + γγχχ       (6.1) 
where 
      x,θχ =        (6.2a) 
 
           xw,−= θγ        (6.2b) 
 
 
In Equations (6.2a) and (6.2b), w is the transverse displacement and θ the section rotation. E 
and G are the Young's and shear moduli and the shear correction factor used in Timoshenko's 
theory. I and A are the moment of inertia and the area of cross-section, respectively. 
 
 
 
                          
                  (a)    1                   2 
                                  w                   w 
 
                               w,x                 w,x  
 

  (b)    1                  2 
                                  w                  w                                 
                               

  θ                  θ 
 

Fig. 6.1 (a) Classical thin beam and (b) Timoshenko beam elements. 
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In the conventional procedure, linear interpolations are chosen for the displacement field 
variables as,  
 
    ( ) 21N1 ξ−=        (6.3a) 
             ( ) 21N 2 ξ+=        (6.3b) 
 
where the dimensionless coordinate ξ=x/l varies from -1 to +1 for an element of length 2l. 
This ensures that the element is capable of strain free rigid body motion and can recover a 
constant state of strain (completeness requirement) and that the displacements are continuous 
within the element and across the element boundaries (continuity requirement). We can 
compute the bending and shear strains directly from these interpolations using the strain 
gradient operators given in Equations (6.2a) and (6.2b). These are then introduced into the 
strain energy computation in Equation (6.1), and the element stiffness matrix is calculated in 
an analytically or numerically exact (a 2 point Gauss Legendre integration rule) way. 
 
For the beam element shown in Fig. 6.1, for a length h the stiffness matrix can be split into 
two parts, a bending related part and a shear related part, as, 
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We shall now model a cantilever beam under a tip load using this element, considering the 
case of a "thin" beam with E=1000, G=37500000, t=1, L=4, using a fictitiously large value 
of G to simulate the "thin" beam condition. Table 6.1 shows that the normalized tip 
displacements are dramatically in error. In fact with a classical beam element model, exact 
answers would have been obtained with one element for this case. We can carefully examine 
Table 6.1 to see the trend as the number of elements is increased. The tip deflections 
obtained, which are several orders of magnitude lower than the correct answer, are directly 
related to the square of the number of elements used for the idealization. In other words, the 
discretization process has introduced an error so large that the resulting answer has a stiffness 
related to the inverse of N2

. This is clearly unrelated to the physics of the Timoshenko beam 
and also not the usual sort of discretization errors encountered in the finite element method. It 
is this very phenomenon that is known as shear locking. 

 
Table 6.1 - Normalized tip deflections 

 
No. of elements “Thin” beam 

1 0.200 × 10-5

2 
 

0.800 × 10-5 

 
4 
 

0.320 × 10-4 

 
8 
 

0.128 × 10-3

 
16 0.512 × 10-3
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The error in each element must be related to the element length, and therefore when a beam 
of overall length L is divided into N elements of equal length h, the additional stiffening 
introduced in each element due to shear locking is seen to be proportional to h2. In fact, 
numerical experiments showed that the locking stiffness progresses without limit as the 
element depth t decreases. Thus, we now have to look for a mechanism that can explain how 
this spurious stiffness of (h/t)2 can be accounted for by considering the mathematics of the 
discretization process. 
 
The magic formula proposed to overcome this locking is the reduced integration method. The 
bending component of the strain energy of a Timoshenko beam element of length 2l shown in 
Equation (6.1) is integrated with a one-point Gaussian rule as this is the minimum order of 
integration required for exact evaluation of this strain energy. However, a mathematically 
exact evaluation of the shear strain energy will demand a two-point Gaussian integration rule. 
It is this rule that resulted in the shear stiffness matrix of rank two that locked. An experiment 
with a one-point integration of the shear strain energy component causes the shear related 
stiffness matrix to change as shown below. The performance of this element was extremely 
good, showing no signs of locking at all (see Table 4.1 for a typical convergence trend with 
this element). 
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6.1.2 The field-consistency paradigm 
 
It is clear from the formulation of the linear Timoshenko beam element using exact 
integration (we shall call it the field-inconsistent element) that ensuring the completeness and 
continuity conditions are not enough in some problems. We shall propose a requirement for a 
consistent interpolation of the constrained strain fields as the necessary paradigm to make our 
understanding of the phenomena complete. 
 
If we start with linear trial functions for w and θ, as we had done in Equation 6.3 above, we 
can associate two generalized displacement constants with each of the interpolations in the 
following manner 
 
    ( )lxaaw 10 +=        (6.4a) 
 
    ( )lxbb 10 +=θ        (6.4b) 
 
We can relate such constants to the field-variables obtaining in this element in a discretized 
sense; thus, a1/l=w,x at x=0, b0=θ and b1/l=θ,x at x=0. This denotation would become useful 
when we try to explain how the discretization process can alter the infinitesimal description 
of the problem if the strain fields are not consistently defined. 
 
If the strain-fields are now derived from the displacement fields given in Equation (6.4), we 
get 
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     ( )lb1=χ        (6.5a) 
    ( ) ( )lxblab 110 +−=γ       (6.5b) 
 
An exact evaluation of the strain energies for an element of length h=2l will now yield the 
bending and shear strain energy as 
 
 
    ( ) ( ) ( ){ }21B lb2lEI21U =       (6.6a) 
   ( ) ( ) ( ){ }2

1
2

10s b31lab2lkGA21U +−=      (6.6b) 
 
It is possible to see from this that in the constraining physical limit of a very thin beam 
modeled by elements of length 2l and depth t, the shear strain energy in Equation (6.6b) must 
vanish. An examination of the conditions produced by these requirements shows that the 
following constraints would emerge in such a limit 
 
     0lab 10 →−        (6.7a) 
        0b        (6.7b)1 →

 
In the new terminology that we had cursorily introduced in Section 5.4, constraint (6.7a) is 
field-consistent as it contains constants from both the contributing displacement 
interpolations relevant to the description of the shear strain field. These constraints can then 
accommodate the true Kirchhoff constraints in a physically meaningful way, i.e. in an 
infinitesimal sense, this is equal to the condition (θ-w,x)→0 at the element centroid. In direct 
contrast, constraint (6.7b) contains only a term from the section rotation θ. A constraint 
imposed on this will lead to an undesired restriction on θ. In an infinitesimal sense, this is 
equal to the condition θ,x→0 at the element centroid (i.e. no bending is allowed to develop in 
the element region). This is the `spurious constraint' that leads to shear locking and violent 
disturbances in the shear force prediction over the element, as we shall see presently. 
 
6.1.3 An error model for the field-consistency paradigm  
 
We must now determine that this field-consistency paradigm leads us to an accurate error 
prediction. We know that the discretized finite element model will contain an error which can 
be recognized when digital computations made with these elements are compared with 
analytical solutions where available. The consistency requirement has been offered as the 
missing paradigm for the error-free formulation of the constrained media problems. We must 
now devise an operational procedure that will trace the errors due to an inconsistent 
representation of the constrained strain field and obtain precise a priori measures for these. 
We must then show by actual numerical experiments with the original elements that the 
errors are as projected by these a priori error models. Only such an exercise will complete the 
scientific validation of the consistency paradigm. Fortunately, a procedure we shall call the 
functional re-constitution technique makes it possible to do this verification. 
 
6.1.4 Functional re-constitution 
 
We have postulated that the error of shear locking originates from the spurious shear 
constraint in Equation (6.7b). We must now devise an error model for the case where the 
inconsistent element is used to model a beam of length L and depth t. The strain energy for 
such a beam can be set up as,  
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                     ( ){ }∫ −+=
L 2

x
2
x

0
dxw,kGA21EI21 θθΠ ,       (6.8) 

 
If an element of length 2l is isolated, the discretization process produces energy for the 
element of the form given in Equation (6.6). In this equation, the constants, which were 
introduced due to the discretization process, can be replaced by the continuum (i.e. the 
infinitesimal) description. Thus, we note that in each element, the constants in Equations 
(6.6a) and (6.6b) can be traced to the constants in Equations (6.4a) and (6.4b) and can be 
replaced by the values of the field variations θ, θ,x and w,x at the centroid of the element. 
Thus, the strain energy of deformation in an element is, 
 
           ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2x

22
x

2
xe ,kGAl61w,2lkGA21,2lEI21 θθθπ +−+=     (6.9) 

 
Thus the constants in the discretized strain energy functional have been re-constituted into an 
equivalent continuum or infinitesimal form. From this re-constituted functional, we can argue 
that an idealization of a beam region of length 2l into a linear displacement type finite 
element would produce a modified strain energy density within that region of,  
 

                ( ) ( ) ( ) ( )2x
2

x
2

e w,kGA21,3kGAlEI21 −++= θθπ     (6.10) 
 
This strain energy density indicates that the original physical system has been altered due to 
the presence of the inconsistent term in the shear strain field. Thus, we can postulate that a 
beam of length L modeled by equal elements of length 2l will have a re-constituted functional 
 

              ( ) ( ) ( ) ( ){ }dxw,kGA21,3kGAlEI21
L 2

x
2

x
2

0
∫ −++= θθΠ     (6.11) 

 
We now understand that the discretized beam is stiffer in bending (i.e. its flexural rigidity) by 
the factor 3EIkGAl2 . For a thin beam, this can be very large, and produces the additional 
stiffening effect described as shear locking. 
 
6.1.5 Numerical experiments to verify error prediction 
 
Our functional re-constitution procedure (note that this is an auxiliary procedure, distinct 
from the direct finite element procedure that yields the stiffness matrix) allows us to critically 
examine the consistency paradigm. It indicates that an exactly-integrated or field-inconsistent 
finite element model tends to behave as a shear flexible beam with a much stiffened flexural 
rigidity I’. This can be related to the original rigidity I of the system by comparing the 
expressions in Equations (6.8) and (6.11) as, 
     3EIkGAL1II 2+=′       (6.12) 
 
We must now show through a numerical experiment that this estimate for the error, which has 
been established entirely a priori, starting from the consistency paradigm and introducing the 
functional re-constitution technique, anticipates very accurately, the behavior of a field-
inconsistent linearly interpolated shear flexible element in an actual digital computation. 
Exact solutions are available for the static deflection W of a Timoshenko cantilever beam of 
length L and depth t under a vertical tip load. If  is the result from a numerical 
experiment involving a finite element digital computation using elements of length 2l, the 
additional stiffening can be described by a parameter as,  

femW

     1WWe femfem −=       (6.13) 
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From Equation (6.12), we already have an a priori prediction for this factor as, 
 
       3EIkGAl1IIe 2=−′=       (6.14) 
 
We can now re-interpret the results shown in Table 6.1 for the thin beam case. Using 
Equations (6.13) and (6.14), we can argue a priori that the inconsistent element will produce 
normalized tip deflections ( ) ( )e11WWfem += . Since e>>1, we have 
 
     ( ) 52

fem 105NWW −×=      (6.15)  
 
for the thin beam. Table 6.2 shows how the predictions made thus compare with the results 
obtained from an actual finite element computation using the field-inconsistent element. 
 
This has shown us that the consistency paradigm can be scientifically verified. Traditional 
procedures such as counting constraint indices, or computing the rank or condition number of 
the stiffness matrices could offer only a heuristic picture of how and why locking sets in. 
 
It will be instructive to note here that conventional error analysis norms in the finite element 
method are based on the percentage error or equivalent in some computed value as compared 
to the theoretically predicted value. We have seen now that the error of shear locking can be 
exaggerated without limit, as the structural parameter that acts as a penalty multiplier 
becomes indefinitely large. The percentage error norms therefore saturate quickly to a value 
approaching 100% and do not sensibly reflect the relationship between error and the 
structural parameter even on a logarithmic plot. A new error norm called the additional 
stiffening parameter, e can be introduced to recognize the manner in which the errors of 
locking kind can be blown out of proportion by a large variation in the structural parameter. 
Essentially, this takes into account, the fact that the spurious constraints give rise to a 
spurious energy term and consequently alters the rigidity of the system being modeled. In 
many other examples (e.g. Mindlin plates, curved beams etc.) it was seen that the rigidity, I, 
of the field consistent system and the rigidity, I’, of the inconsistent system, were related to 
the structural parameters in the form, I’/I = α(l/t)2 where l is an element dimension and t is 
the element thickness. Thus, if w is the deflection of a reference point as predicted by an 
analytical solution to the theoretical description of the problem and wfem is the fem deflection 
predicted by a field inconsistent finite element model, we would expect the relationship 
described by Equation 6.14. A logarithmic plot of the new error norm against the parameter 
(l/t) will show a quadratic relationship that will continue indefinitely as (l/t) is increased. This 
was found to be true of the many constrained media problems. By way of illustration of the 
distinction made 
 
Table 6.2 - Normalized tip deflections for the thin beam (Case 2) computed from fem model and 

predicted from error model (Equation (6.15)). 
 

N Computed (fem) Predicted 
1 0.200 × 10-4 0.200 × 10-4

2 0.800 × 10-4 0.800 × 10-4

4 0.320 × 10-3 0.320 × 10-3

8 0.128 × 10-3 0.128 × 10-3

16 0.512 × 10-3 0.512 × 10-3
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iction for these oscillations by applying the functional re-constitution 

rce predicted by a field-consistent shear strain field (we shall see soon 
tent element can be designed) and V the shear force obtained from the 
field, we can write from Equation (6.5b), 

( )labkGAV 10 −=       (6.16a) 
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    ( )lxbkGAVV 1+=       (6.16b) 
 
We see that V has a linear term that relates directly to the constant that appeared in the 
spurious constraint, Equation (6.7b). We shall see below from Equation (6.17) that b1 will not 
be zero, in fact it is a measure of the bending moment at the centroid of the element. Thus, in 
a field-inconsistent formulation, this constant will activate a violent linear shear force 
variation when the shear forces are evaluated directly from the shear strain field given in 
Equation (6.5b). The oscillation is self-equilibrating and does not contribute to the force 
equilibrium over the element. However, it contributes a finite energy in Equation (6.9) and in 
the modeling of very slender beams, this spurious energy is so large as to completely 
dominate the behavior of the beam and cause a locking effect. 
 
Figure 6.3 shows the shear force oscillations in a typical problem - a straight cantilever beam 
with a concentrated moment at the tip. One to ten equal length field-inconsistent elements 
were used and shear forces were computed at the nodes of each element. In each case, only 
the variation within the element at the fixed end is shown, as the pattern repeats itself in a 
saw-tooth manner over all other elements. At element mid-nodes, the correct shear force i.e. 
V=0 is reproduced. Over the length of the element, the oscillations are seen to be linear 
functions corresponding to the kGA b1 (x/l) term. Also indicated by the solid lines, is the 
prediction made by the functional re-constitution exercise. We shall explore this now. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.3 Shear force oscillations in element nearest the root, for N element models of a cantilever of length L = 

60. 
Consider a straight cantilever beam with a tip shear force Q at the free end. This should 
produce a linearly varying bending moment M and a constant shear force Q in the beam. An 
element of length 2l at any station on the beam will now respond in the following manner. 
Since, a linear element is used, only the average of the linearly varying bending moment is 
expected in each finite element. If the element is field-consistent, the constant b1 can be 
associated after accounting for discretization, to relate to the constant bending moment M0 at 
the element centroid as, 
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lbEIM 10 =   or 
 

EIlMb 01 =        (6.17) 
 

In a field-inconsistent problem, due to shear locking, it is necessary to consider the modified 
flexural rigidity I’ (see Equation 6.17) that modifies b1 to 1b′ , that is,  
 
     IElMb 01 ′=′  
        ( ){ }e1EIlM0 +=  
        ( )e1b1 +=        (6.18) 
 
where 3EIkGAle 2= . 
 
Thus, in a field-inconsistent formulation, the constant b1 gets stiffened by the factor e; the 
constant bending moment M0 is also underestimated by the same factor. Also, for a very thin 
beam where e>>1, the centroidal moment M0 predicted by a field-consistent element 
diminishes in a t2 rate for a beam of rectangular cross-section. These observations have been 
confirmed through digital computation.  
 
The field-consistent element will respond with QVV 0 ==  over the entire element length 2l. 
The field-inconsistent shear force V from Equations (6.16) and (6.18) can be written for a 
very thin beam (e>>1) as,  
 
    ( ) ( )lxl3MQV 0+=        (6.19) 
 
These are the violent shear force linear oscillations within each element, which originate 
directly from the field-inconsistency in the shear strain definition.  
 
These oscillations are also seen if field-consistency had been achieved in the element by 
using reduced integration for the shear strain energy. Unless the shear force is sampled at the 
element centroid (i.e. Gaussian point, x/l=0), these disturbances will be much more violent 
than in the exactly integrated version. 
 
6.1.7 The consistent formulation of the linear element 
 
We can see that reduced integration ensures that the inconsistent constraint does not appear 
and so is effective in producing a consistent element, at least in this instance. We must now 
satisfy ourselves that such a modification did not violate any variational theorem. 
 
The field-consistent element, as we now shall call an element version free of spurious (i.e. 
inconsistent) constraints, can and has been formulated in various other ways as well. The 
`trick' is to evaluate the shear strain energy, in this instance, in such a way that only the 
consistent term will contribute to the shear strain energy. Techniques like addition of bubble 
modes, hybrid methods etc. can produce the same results, but in all cases, the need for 
consistency of the constrained strain field must be absolutely met. 
 
We explain now why the use of a trick like the reduced integration technique, or the use of 
assumed strain methods allows the locking problem to be overcome. It is obvious that it is not 
possible to reconcile this within the ambit of the minimum total potential principle only, 
which had been the starting point of the conventional formulation. 
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We saw in Chapter 2, an excellent example of a situation where it was necessary to proceed 
to a more general theorem (one of the so-called mixed theorems) to explain why the finite 
element method computed strain and stress fields in a `best-fit' sense. We can now see that in 
the case of constrained media problems, the mixed theorem such as the Hu-Washizu or 
Hellinger-Reissner theorem can play a crucial role in proving that by modifying the minimum 
total potential based finite element formulation by using an assumed strain field to replace the 
kinematically derived constrained field, no energy, or work principle or variational norms 
have been violated. 

 
To eliminate problems such as locking, we look for a consistent constrained strain field to 
replace the inconsistent kinematically derived strain field in the minimum total potential 
principle. By closely examining the strain gradient operators, it is possible to identify the 
order up to which the consistent strain field must be interpolated. In this case, for the linear 
displacement interpolations, Equations (6.5b), (6.7a) and (6.7b) tell us that the consistent 
interpolation should be a constant. At this point we shall still not presume what this constant 
should be, although past experience suggests it is the same constant term seen in Equation 
(6.7a). Instead, we bring in the Hellinger-Reissner theorem in the following form to see the 
identity of the consistent strain field clearly. For now, it is sufficient to note that the 
Hellinger-Reissner theorem is a restricted case of the Hu-Washizu theorem. In this theorem, 
the functional is stated in the following form,  
 

    ( )dxkGAkGA21EIEI21 TTTT∫ +−+− γγγγχχχχ      (6.20) 
 
where χ  and γ  are the new strain variables introduced into this multi-field principle. Since 
we have difficulty only with the kinematically derived γ we can have χχ =  and recommend 
the use of a γ  which is of consistent order to replace γ. A variation of the functional in 
Equation (6.20) with respect to the as yet undetermined coefficients in the interpolation for γ  
yields  
 
     ( )∫ =− 0dxT γγγδ       (6.21) 

 
This orthogonality condition now offers a means to constitute the coefficients of the 
consistent strain field from the already known coefficients of the kinematically derived strain 
field. Thus, for γ given by Equation (6.5b), it is possible to show that ( )lb 10 αγ −= . In this 
simple instance, the same result is obtained by sampling the shear strain at the centroid, or by 
the use of one-point Gaussian integration. What is important is that, deriving the consistent 
strain-field using this orthogonality relation and then using this to compute the corresponding 
strain energy will yield a field-consistent element which does not violate any of the 
variational norms, i.e. an exact equivalence to the mixed element exists without having to go 
through the additional operations in a mixed or hybrid finite element formulation, at least in 
this simple instance. We say that the variational correctness of the procedure is assured. The 
substitute strain interpolations derived thus can therefore be easily coded in the form of strain 
function subroutines and used directly in the displacement type element stiffness derivations. 
 
6.1.8 Some concluding remarks on the linear beam element 
 
So far we have seen the linear beam element as an example to demonstrate the principles 
involved in the finite element modeling of a constrained media problem. We have been able 
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to demonstrate that a conceptual framework that includes a condition that specifies that the 
strain fields which are to be constrained must satisfy a consistency criterion is able to provide 
a complete scientific basis for the locking problems encountered in conventional 
displacement type modeling. We have also shown that a correctness criterion (which links 
the assumed strain variation of the displacement type formulation to the mixed variational 
theorems) allows us to determine the consistent strain field interpolation in a unique and 
mathematically satisfying manner. 
 
It will be useful now to see how these concepts work if a quadratic beam element is to be 
designed. This is a valuable exercise as later, the quadratic beam element shall be used to 
examine problems such as encountered in curved beam and shell elements and in 
quadrilateral plate elements due to non-uniform mapping.  
 
6.2 The quadratic Timoshenko beam element 
 
We shall now very quickly see how the field-consistency rules explain the behavior of a 
higher order element. We saw in Chapter 5 that the conventional formulation with lowest 
order interpolation functions led to spurious constraints and a non-singular assembled 
stiffness matrix, which result in locking. In a higher order formulation, the matrix was 
singular but the spurious constraints resulted in a system that had a higher rank than was felt 
to be desirable. This resulted in sub-optimal performance of the approximation. We can now 
use the quadratic beam element to demonstrate that this is true in finite element 
approximations as well. 
 
6.2.1 The conventional formulation  
 
Consider a quadratic beam element designed according to conventional principles, i.e. exact 
integration of all energy terms arising from a minimum total potential principle. As the beam 
becomes very thin, the element does not lock; in fact it produces reasonably meaningful 
results. Fig. 6.4 shows a typical comparison between the linear and quadratic beam elements 
in its application to a simple problem. A uniform cantilever beam of length 1.0 m, width 0.01 
m and depth 0.01 m has a vertical tip load of 100 N applied at the tip. For E=1010 N/m2 and 
µ=0.3, the engineering theory of beams predicts a tip deflection of w=4.0 m. We shall 
consider three finite element idealizations of this problem - with the linear 2-node field-
consistent element considered earlier in this section (2C, on the Figure), the quadratic 3-node 
field-inconsistent element being discussed now (3I, on the Figure) and the quadratic 3-node 
field-consistent element which we shall derive later (3C). It is seen that for this simple 
problem, the 3C element produces exact results, as it is able to simulate the constant shear 
and linear bending moment variation along the beam length. The 3I and 2C elements show 
identical convergence trends and behave as if they are exactly alike. The curious aspects that 
call for further investigation are: the quadratic element (3I) behaves in exactly the same way 
as the field-consistent linear element (2C), giving exactly the same accuracy for the same 
number of elements although the system assembled from the former had nearly twice as 
many nodes. It also produced moment predictions, which were identical, i.e., the quadratic 
beam element, instead of being able to produce linear-accurate bending moments could now 
yield only a constant bending moment within each element, as in the field-consistent linear 
element. Further, there were now quadratic oscillations in the shear force predictions for such 
an element. Note now that these curious features cannot be explained from the old arguments, 
which linked locking to the non-singularity or the large rank or the spectral condition number 
of the stiffness matrix. We shall now proceed to explain these features using the field-
consistency paradigm. 
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              Fig. 6.4 A uniform cantilever beam with tip shear force - 

       convergence trends of linear and quadratic elements. 
 

If quadratic isoparametric functions are used for the field-variables w and θ in the following 
manner 
 
    ( ) ( )2210 lxalxaaw ++=  
    ( ) ( )2210 lxblxbb ++=θ  
 
the shear strain interpolation will be, 
 

( ) ( ) ( )2
221120 313bl2abla3bb ξξγ −−−+−+=           (6.22) 

 
Again, we emphasize the usefulness of expanding the strain field in terms of the Legendre 
polynomials. When the strain energies are integrated, because of the orthogonal nature of the 
Legendre polynomials the discretized energy expression becomes the sum of the squares of 
the coefficients multiplying the Legendre polynomials. Indeed, the strain energy due to 
transverse shear strain is,  
 

( ) ( ) ( ) ( ){ }454bl2ab31la3bb2lkGA21U 2
2

2
21

2
120s +−+−+=    (6.23) 

 
Therefore, when we introduce the penalty limit condition that for a thin beam the shear strain energies 

must vanish, we can argue that the coefficients of the strain field expanded in terms of the Legendre 
polynomials must vanish separately. In this case, three constraints emerge: 

 
    ( ) 0la3bb 120 →−+     (6.24a) 
        ( ) 0l2ab 21 →−      (6.24b) 
                 (6.24c) 0b2 →
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Equations (6.24a) and (6.24b) represent constraints having contributions from the field 
interpolations for both w and θ. They can therefore reproduce, in a consistent manner, true 
constraints that reflect a physically meaningful imposition of the thin beam Kirchhoff 
constraint. This is therefore the field-consistent part of the shear strain interpolation.  

 
Equation (6.24c) however contains a constant only from the interpolation for θ. This 
constraint, when enforced, is an unnecessary restriction on the freedom of the interpolation 
for θ, constraining it in fact to behave only as a linear interpolation as the constraint implies 
that θ,xx→0 in a discretized sense over each beam element region. The spurious energy 
implied by such a constraint does not contribute directly to the discretized bending energy, 
unlike the linear beam element seen earlier. Therefore, field-inconsistency in this element 
would not cause the element to lock. However, it will diminish the rate of convergence of the 
element and would induce disturbances in the form of violent quadratic oscillations in the 
shear force predictions, as we shall see in the next section. 
 
6.2.2 Functional reconstitution 
 
We can use the functional re-constitution technique to see how the inconsistent terms in the 
shear strain interpolation alter the description of the physics of the original problem (we shall 
skip most of the details, as the material is available in greater detail in Ref. 6.1). 
 
The b2 term that appears in the bending energy also makes an appearance in the shear strain 
energy, reflecting its origin through the spurious constraint. We can argue that this accounts 
for the poor behavior of the field-inconsistent quadratic beam element (the 3I of Fig. 6.4). 
Ref. 6.1 derives the effect more precisely, demonstrating that the following features can be 
fully accounted for: 
 

i) the displacement predictions of the 3I element are identical to that made by the 2C 
element on an element by element basis although it has an additional mid-node 
and has been provided with the more accurate quadratic interpolation functions. 

ii) the 3I element can predict only a constant moment within each element, exactly as 
the 2C element does. 

iii) there are quadratic oscillations in the shear force field within each element. 
 
We have already discussed earlier that the 3I element (the field-inconsistent 3-noded 
quadratic) converges in exactly the same manner as the 2C element (the field-consistent 
linear). This has been explained by showing using the functional re-constitution technique, 
that the b2 term, which describes the linear variation in the bending strain and bending 
moment interpolation, is "locked" to a vanishingly small value. The 3I element then 
effectively behaves as a 2C element in being able to simulate only a constant bending-
moment in each region of a beam, which it replaces. 

 
6.2.3 The consistent formulation of the quadratic element 
 
As in the linear element earlier, the field-consistent element (3C) can be formulated in 
various ways. Reduced integration of the shear strain energy using a 2-point Gauss-Legendre 
formula was the most popular method of deriving the element so far. Let us now derive this 
element using the `assumed' strain approach. We use the inverted commas to denote that the 
strain is not assumed in an arbitrary fashion but is actually uniquely determined by the 
consistency and the variational correctness requirements. The re-constitution of the field is to 
be done in a variationally correct way, i.e. we are required to replace γ in Equation (6.22) 
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which had been derived from the kinematically admissible displacement field interpolations 
using the strain-displacement operators with an `assumed' strain field γ  which contains terms 
only upto and including the linear Legendre polynomial in keeping with the consistency 
requirement. Let us write this in the form 
 

ξγ 10 cc +=        (6.25) 
 
The orthogonality condition in Equation (6.21) dictates how γ  should replace γ over the 
length of the element. This determines how c0 and c1 should be constituted from b0, b1 and b2. 
Fortunately, the orthogonal nature of the Legendre polynomials allows this to be done for this 
example in a very trivial fashion. The quadratic Legendre polynomial and its coefficient are 
simply truncated and c0=b0 and c1=b1 represent the variationally correct field-consistent 
`assumed' strain field. The use of such an interpolation subsequently in the integration of the 
shear strain energy is identical to the use of reduced integration or the use of a hybrid 
assumed strain approach. In a hybrid assumed strain approach, such a consistent re-
constitution is automatically implied in the choice of assumed strain functions and the 
operations leading to the derivation of the flexibility matrix and its inversion leading to the 
final stiffness matrix. 
 
6.3 The Mindlin plate elements 
 
A very large part of structural analysis deals with the estimation of stresses and displacements 
in thin flexible structures under lateral loads using what is called plate theory. Thus, plate 
elements are the most commonly used elements in general purpose structural analysis. At 
first, most General Purpose Packages (GPPs) for structural analysis used plate elements based 
on what are called the C1 theories. Such theories had difficulties and limitations and a1so 
attention turned to what are called the C0 theories. 
 
The Mindlin plate theory [6.2] is now the most commonly used basis for the development of 
plate elements, especially as they can cover applications to moderately thick and laminated 
plate and shell constructions. It has been estimated that in large scale production runs using 
finite element packages, the simple four-node quadrilateral plate element (the QUAD4 
element) may account for as much as 80% of all usage. It is therefore important to understand 
that the evolution of the current generation of QUAD4 elements from those of yester-year, 
over a span of nearly three decades was made difficult by the presence of shear locking. We 
shall now see how this takes place. 
 
The history behind the discovery of shear locking in plate elements is quite interesting. It was 
first recognized when an attempt was made to represent the behavior of shells using what is 
called the degenerate shell approach [6.3]. In this the shell behavior is modeled directly after 
a slight modification of the 3D equations and shell geometry and domain are represented by a 
3D brick element but its degrees of freedom are condensed to three displacements and two 
section rotations at each node. Unlike classical plate or shell theory, the transverse shear 
strain and its energy is therefore accounted for in this formulation. Such an approach was 
therefore equivalent to a Mindlin theory formulation. These elements behaved very poorly in 
representing even the trivial example of a plate in bending and the errors progressed without 
limit, as the plates became thinner. The difficulty was attributed to shear locking. This is in 
fact the two-dimensional manifestation of the same problem that we encountered for the 
Timoshenko beam element; ironically it was noticed first in the degenerate shell element and 
was only later related to the problems in designing Timoshenko beam and Mindlin plate 
elements [6.4]. The remedy proposed at once was the reduced integration of the shear strain 
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energy [6.5,6.6]. This was only partially successful and many issues remained unresolved. 
Some of these were, 
 

i) the 2×2 rule failed to remove shear locking in the 8-node serendipity plate 
element, 

ii) the 2×2 rule in the 9-node Lagrangian element removed locking but introduced 
zero energy modes, 

iii) the selective 2×3 and 3×2 rule for the transverse shear strain energies from γxz and 
γyz recommended for a 8-node element also failed to remove shear locking, 

iv) the same selective 2×3 and 3×2 rule when applied to a 9-noded element is optimal 
for a rectangular form of the element but not when the element was distorted into 
a general quadrilateral form,  

v) even after reduced integration of the shear energy terms, the degenerate shell 
elements performed poorly when trying to represent the bending of curved shells, 
due to an additional factor, identified as membrane locking [6.7], originating 
now from the need for consistency of the membrane strain interpolations. We 
shall consider the membrane-locking phenomenon in another section. 

 
We shall confine our study now to plate elements without going into the complexities of the 
curved shell elements. 
 
In Kirchhoff-Love thin plate theory, the deformation is completely described by the 
transverse displacement w of the mid-surface. In such a description, the transverse shear 
deformation is ignored. To account for transverse shear effects, it is necessary to introduce 
additional degrees of freedom. We shall now consider Mindlin's approximations, which have 
permitted such an improved description of plate behavior. The degenerate shell elements that 
we discussed briefly at the beginning of this section can be considered to correspond to a 
Mindlin type representation of the transverse shear effects. 
 
In Mindlin's theory [6.2], deformation is described by three quantities, the section rotations θx 
and θy (i.e. rotations of lines normal to the midsurface of the undeformed plate) and the mid-
surface deflection w. The bending strains are now derived from the section rotations and do 
not cause any difficulty when a finite element model is made. The shear strains are now 
computed as the difference between the section rotations and the slopes of the neutral 
surfaces, thus, 
 

xxxz w,−= θγ  
yyyz w,−= θγ       (6.26) 

 
The stiffness matrix of a Mindlin plate element will now have terms from the bending strain 
energy and the shear strain energy. It is the inconsistent representation of the latter that causes 
shear locking. 
 
6.3.1 The 4-node plate element 
 
The 4-node bi-linear element is the simplest element based on Mindlin theory that could be 
devised. We shall first investigate the rectangular form of the element [6.4] as it is in this 
configuration that the consistency requirements can be easily understood and enforced. In 
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fact, an optimum integration rule can be found which ensures consistency if the element is 
rectangular. It was established in Ref. 6.4 that an exactly integrated Mindlin plate element 
would lock even in its rectangular form. Locking was seen to vanish for the rectangular 
element if the bending energy was computed with a 2×2 Gaussian integration rule while a 
reduced 1-point rule was used for the shear strain energy. This rectangular element behaved 
very well if the plate was thin but the results deteriorated as the plate became thicker. Also, 
after distortion to a quadrilateral form, locking re-appeared. A spectral analysis of the 
element stiffness matrix revealed a rank deficiency - there were two zero energy mechanisms 
in addition to the usual three rigid body modes required for such an element. It was the 
formation of these mechanisms that led to the deterioration of element performance if the 
plate was too thick or if it was very loosely constrained. It was not clear why the quadrilateral 
form locked even after reduced integration. We can now demonstrate from our consistency 
view-point why the 1-point integration of the shear strain energy is inadequate to retain all 
the true Kirchhoff constraints in a rectangular thin plate element. However, we shall postpone 
the discussion on why such a strategy cannot preserve consistency if the element was 
distorted to a later section. 
 
Following Ref. [6.4], the strain energy for an isotropic, linear elastic plate element according 
to Mindlin theory can be constituted from its bending and shear energies as,  
 

     SB UUU +=

 

( ) [{∫ ∫ ++
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2
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Fig. 6.5 Cartesian and natural coordinate system for a four-node rectangular plate element. 
 

 18



 

where x, y are Cartesian co-ordinates (see Fig. 6.5), w is the transverse displacement, θx and 
θy are the section rotations, E is the Young's modulus, ν is the Poisson's ratio, k is the shear 
correction factor and t is the plate thickness. The factor k is introduced to compensate for the 
error in approximating the shear strain as a constant over the thickness direction of a Mindlin 
plate. 
 

Let us now examine the field-consistency requirements for one of the shear strains, 
γxz, in the Cartesian system. The admissible displacement field interpolations required for a 4-
node element can be written in terms of the Cartesian co-ordinates itself as, 
 

  xyayaxaaw 3210 +++=       (6.28a) 
  xybybxbb 3210 +++=θ       (6.28b) 

 
The shear strain field derived from these kinematically admissible shape functions is, 
 

   ( ) ( ) xybxbyabab 313210xz ++−+−=γ       (6.29) 
 
As the plate thickness is reduced to zero, the shear strains must vanish. The discretized 
constraints that are seen, to be enforced as 0xz →γ  in Equation (6.29) are, 

       (6.30a) 0ab 10 →−

0ab 32 →−      (6.30b) 

0b1 →      (6.30c) 

0b3 →      (6.30d) 
 
The constraints shown in Equations (6.30a) and (6.30b) are physically meaningful and 
represent the Kirchhoff condition in a discretized form. Constraints (6.30c) and (6.30d) are 
the cause for concern here - these are the spurious or `inconsistent' constraints which lead to 
shear locking. Thus, in a rectangular element, the requirement for consistency of the 
interpolations for the shear strains in the Cartesian co-ordinate system is easily recognized as 
the polynomials use only Cartesian co-ordinates. Let us now try to derive the optimal element 
and also understand why the simple 1-point strategy of Ref. 6.4 led to zero energy 
mechanisms. 

It is clear from Equations (6.29) and (6.30) that the terms b1x and b3xy are the inconsistent 
terms which will contribute to locking in the form of spurious constraints. Let us now look 
for optimal integration strategies for removing shear locking without introducing any zero 
energy mechanisms. We shall consider first, the part of the shear strain energy contributed by 
γxz. We must integrate exactly, terms such as (b0-a1), (b2-a3)y, b1x, and b3xy. We now identify 
terms such as (b0-a1), (b2-a3), b1, and b3 as being equivalent to the quantities (θx-w,x)0, (θx-w,x-

),y0, (θx,x)0, and (θx,xy)0 where the subscript ‘0’ denotes the values at the centroid of the 
element (for simplicity, we let the centroid of the element lie at the origin of the Cartesian co-
ordinate system).  
 
An exact integration, that is a 2×2 Gaussian integration of the shear strain energy leads to 
 

( ) ( ) ( ) ( )[ ]∫ ∫ ++−+−= 2
0xyx

222
0xx

2
y0

2
xx

22
0xx

2
xz ,9lh,3lw,3hw,4lhdydx θθθθγ ,   (6.31) 
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In the penalty limit of a thin plate, these four quantities act as constraints. The first two 
reproduce the true Kirchhoff constraints and the remaining two act as spurious constraints 
that cause shear locking by enforcing θx,x→0 and θx,xy→0 in the element. 
 
If a 1×2 Gaussian integration is used, we have, 
 

 ( ) ( )[ ]∫ ∫ −+−= y0
2

xx
22

0xx
2
xz w,3hw,4lhdydx ,θθγ    (6.32) 

 
Thus, only the true constraints are retained and all spurious constraints are removed. This 
strategy can also be seen to be variationally correct in this case; we shall see later that in a 
quadrilateral case, it is not possible to ensure variational correctness exactly. By a very 
similar argument, we can show that the part of the shear strain energy from γyz will require a 
2×1 Gaussian integration rule. This element would be the optimal rectangular bi-linear 
Mindlin plate element. 
 

Let us now look at the 1-point integration strategy used in Ref. 6.4. This will give 
shear energy terms such as, 
 

         ( )[ ]∫ ∫ −= 2
0xx

2
xz w,4lhdydx θγ      (6.33) 

 
We have now only one true constraint each for the shear energy from γxz and γyz respectively 
while the other Kirchhoff constraints ( ) 0w, y0xx →− ,θ  and ( ) 0w, x0yy →− ,θ  are lost. This 
introduces two zero energy modes and accounts for the consequent deterioration in 
performance of the element when the plates are thick or are very loosely constrained, as 
shown in Ref. 6.4. 
 
We have seen now that it is a very simple procedure to re-constitute field-consistent assumed 
strain fields from the kinematically derived fields such as shown in Equation (6.29) so that 
they are also variationally correct. This is not so simple in a general quadrilateral where the 
complication arising from the isoparametric mapping from a natural co-ordinate system to a 
Cartesian system makes it very difficult to see the consistent form clearly. We shall see the 
difficulties associated with this form in a later section. 
 
6.3.2 The quadratic 8-node and 9-node plate elements 
 
The 4-node plate element described above is based on bi-linear functions. It would seem that 
an higher order element based on quadratic functions would be far more accurate. There are 
now two possibilities, an 8-node element based on what are called the serendipity functions 
and a 9-node element based on the Lagrangian bi-quadratic functions. There has been a 
protracted debate on which version is more useful, both versions having fiercely committed 
protagonists.  By now, it is well known that the 9-node element in its rectangular form is free 
of shear locking even with exact integration of shear energy terms and that its performance is 
vastly improved when its shear strain energies are integrated in a selective sense (2×3 and 
3×2 rules for xzγ  and yzγ  terms respectively). It is in fact analogous to the quadratic 
Timoshenko beam element, the field-inconsistencies not being severe enough to cause 
locking. This is however not true for the 8-node element which was derived from the Ahmad 
shell element [6.3] and which actually pre-dates the 4-node Mindlin element. An exact 
integration of bending and shear strain energies resulted in an element that locked for most 
practical boundary suppressions even in its rectangular form. Many ad-hoc techniques e.g. 
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the reduced and selective integration techniques, hybrid and mixed methods, etc. failed or 
succeeded only partially. It was therefore regarded for some time as an unreliable element as 
no quadrature rule seemed to be able to eliminate locking entirely without introducing other 
deficiencies. It seems possible to attribute this noticeable difference in the performance of the 
8- and 9-node elements to the missing central node in the former. This makes it more difficult 
to restore consistency in a simple manner. 
 
6.3.3 Stress recovery from Mindlin plate elements 
 
The most important information a structural analyst looks for in a typical finite element static 
analysis is the state of stress in the structure. It is therefore very important for one to know 
points of optimal stresses in the Mindlin plate elements. It is known that the stress recovery at 
nodes from displacement elements is unreliable, as the nodes are usually the points where the 
strains and stresses are least accurate. It is possible however to determine points of optimal 
stress recovery using an interpretation of the displacement method as a procedure that obtains 
strains over the finite element domain in a least-squares accurate sense. In Chapter 2, we saw 
a basis for this interpretation. We can apply this rule to determine points of accurate stress 
recovery in the Mindlin plate elements. For a field-consistent rectangular 4-node element, the 
points are very easy to determine [6.8] (note that in a field-inconsistent 4-node element, there 
will be violent linear oscillations in the shear stress resultants corresponding to the 
inconsistent terms). Thus, Ref. 6.8 shows that bending moments and shear stress resultants 
Qxz and Qyz are accurate at the centroid and at the 1×2 and 2×1 Gauss points in a rectangular 
element for isotropic or orthotropic material. It is coincidental, and therefore fortuitous, that 
the shear stress resultants are most accurate at the same points at which they must be sampled 
in a selective integration strategy to remove the field-inconsistencies! For anisotropic cases, it 
is safest to sample all stress resultants (bending and shear) at the centroid. 
 
Such rules can be extended directly to the 9-node rectangular element. The bending moments 
are now accurate at the 2×2 Gauss points and the shear stress resultants in an isotropic or 
orthotropic problem are optimal at the same 2×3 and 3×2 Gauss points which were used to 
remove the inconsistencies from the strain definitions. However, accurate recovery of stresses 
from the 8-node element is still a very challenging task because of the difficulty in 
formulating a robust element. The most efficient elements known today are variationally 
incorrect even after being made field-consistent and need special filtering techniques before 
the shear stress resultants can be reliably sampled. 
 
So far, discussion on stress sampling has been confined to rectangular elements. When the 
elements are distorted, it is no simple matter to determine the optimal points for stress 
recovery - the stress analyst must then exercise care in applying these rules to seek reliable 
points for recovering stresses. 
 
6.4 Concluding remarks 
 
We can conclude this section on shear locking by noting that the available understanding was 
unable to resolve the phenomena convincingly. The proposed improvement, which was the 
consistency paradigm, together with the functional re-constitution procedure, allowed us to 
derive an error estimate for a case under locking and we could show through numerical 
(digital) experiments that these estimates were accurate. In this way we are convinced that a 
theory with the consistency paradigm is more successful from the falsifiability point of view 
than one without. 
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